
1

Acquiring Private Keys for Packet
Analysis

Author: Robert Bullen
Revision: 8

Date: 2013/12/11

Introduction
In order to decrypt SSL packet captures for application layer analysis, analysts must ask the information

security team to deliver private keys belonging to the SSL servers of interest. This document explains

popular key file formats and, of those, which will be accepted by popular packet analyzers so that the

analysts and security personnel can agree on the correct format. If the delivered key files are

incompatible with the analyst’s packet analyzer and must be converted, this document covers the

process and tools for that, as well.

Definitions
In the encryption/decryption space, there are a few different cryptographic key file formats and

terminology is often used pretty loosely. Therefore it is important that the analyst and the security team

have a common understanding of these file types.

It is unusual for a private key to be stored or passed around in the raw. Usually it exists within a

password-protected container file, which may also contain an associated certificate chain that describes

the private key’s issuance and authenticity. Discussed herein are three such container file formats.

Container
File
Format

File
Extensions*

Description

PEM PEM stands for Privacy-enhanced Electronic Mail, defined in RFCs 1421–1424.
The impression I get is that the PEM container file format is a branch of those
RFCs and the only piece that became widespread.

pem If a PEM file contains both an encrypted private key and its certificate chain,
convention dictates that the .pem extension is used.

key If it contains only the unencrypted private key in RSA format, the de facto
extension is .key (hereafter referred to as KEY files).

cer,
cert

If it contains only the certificate chain then .cer or .cert is commonly used for
the file extension.**

PKCS#12 pfx,
p12,
pkcs12

PKCS #12 is a member of the family of standards called Public-Key
Cryptography Standards (PKCS) published by RSA Laboratories. See the
Wikipedia article.

http://en.wikipedia.org/wiki/Privacy_Enhanced_Mail
http://en.wikipedia.org/wiki/PKCS
http://en.wikipedia.org/wiki/PKCS
http://en.wikipedia.org/wiki/RSA_Laboratories
http://en.wikipedia.org/wiki/PKCS_%E2%99%AF12

2

Container
File
Format

File
Extensions*

Description

Java
Keystore

jks,
keystore

Java Keystores are the preferred container format in the Java domain, most
notably used by Oracle WebLogic. See the Wikipedia article.

*It should be noted that extensions for these files can be used just as loosely as the terminology

surrounding them. This table includes conventions used when naming container files, but a file’s

extension is not an absolute indicator of its format or contents.

**An interesting feature of PEM, and in fact all three of these file formats, is that they are not required to

contain a private key at all. They could hold only certificates, in which case they are useless for

decryption.

Packet Analyzer Compatibility
Packet analyzers expect private keys in PEM format. Some analyzers support password-protected PEM

files, but nearly all will take a KEY file (see the container file format above for PEM and KEY file

definitions). To determine which, consult the following compatibility matrix.

Packet Analyzer Supports PEM? Supports KEY?

Wireshark Yes Yes

Network Instruments Observer No Yes

WildPackets OmniPeek Yes No

Compuware AMD No Yes

TODO: This matrix needs more tools, more research, and more validation!

If the analyst has been given a PEM file (and its password) and his tool of choice supports PEM, then

manually extracting the key is not necessary. If, however, a raw KEY file is needed, continue reading.

Private Key Extraction
How the private key is extracted depends upon the starting format of the container file:

Container File Format Private Key Extraction Tool(s)

PEM OpenSSL

PKCS#12 OpenSSL

Java Keystore keytool and jksExportKey

http://en.wikipedia.org/wiki/Keystore

3

PEM and PKCS#12 Private Key Extraction using OpenSSL
To extract a private key from its PEM or PKCS#12 container file, use OpenSSL—an open source command

line utility widely available for all operating systems. Once it is installed, execute it with one of the

following commands:

Format Extraction Command Line

PEM openssl rsa -in <file.pem> -out <file.key> [-passin pass:<password>]

PKCS#12 openssl pkcs12 -in <file.pfx> -out <file.key> [-passin

pass:<password>] -nodes –nocerts

The relevant command arguments are:

Argument Description

rsa or pkcs12 Specifies the mode in which OpenSSL should operate. As mentioned
previously, there are lots of different encryption/decryption
algorithms and container file formats, and OpenSSL needs this piece
of information to correctly handle the input or output format.

-in <file.ext> Indicates the input file. Replace <file.ext> with the actual PEM or
PKCS#12 file you were given.

-out <file.key> Specifies the output file in which to place the extracted key. Replace
<file.key> with the desired file name. This key file is ultimately
what will be used by the packet analyzer.

-passin pass:<password> Specifies the container file's password. Replace <password> with the
container file’s actual password. If these arguments are not supplied
on the command line, OpenSSL will prompt for the password.

-nodes For PKCS#12 files only. “No DES” tells OpenSSL to not encrypt the KEY
file being output.

-nocerts For PKCS#12 files only. Prevents the certificate chain from being
included in the output file.

Java Keystore Private Key Extraction with keytool and jksExportKey
OpenSSL doesn’t work with Java Keystores. You must turn to a couple Java-based tools and invoke them

in a two-step process.

Step 1: Discover the Private Key Alias Using keytool

The first tool is (appropriately) named keytool. It is included in Java installations and can be used to

output a summary of the Java Keystore of interest. JKS files may contain multiple entries and each has

its own alias. The private key is one such entry and if its alias is not known a priori, keytool can be used

to find it.

Step Command Line

Discover the
private key
alias

keytool –list [–v|-rfc] –keystore <file.jks> [-storepass

<password>]

http://www.openssl.org/
http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/keytool.html

4

The relevant command line arguments are:

Argument Description
-list Tells keytool to print a summary of the contents of the keystore.

-v or –rfc Optionally modifies the output of –list; -v forces the summary to
be in human readable format and –rfc emulates the contents of
PEM files. Neither of these is necessary as the alias you are looking for
will be included regardless.

–keystore <file.jks> Indicates the input file. Replace <file.jks> with the actual JKS file.
-storepass <password> Specifies the container file’s password. Replace <password> with the

JKS file’s actual password. If these arguments are not supplied on the
command line, keytool will prompt for the password.

The output will include a header

followed by one or more entry

summaries, each starting with its alias.

That is the text to look for. An example

of using keytool on a JKS file named

“my_keystore.jks” to discover that the

alias for the private key entry is

“my_alias” is at right. (Coloring added

for readability.)

Step 2: Extract the Private Key Using jksExportKey

Unfortunately keytool doesn’t do the critical task of extracting private keys from JKS containers. For that

another piece of code is needed that is not part of the Java runtime environment. It is (also

appropriately) named jksExportKey. As a JAR file made available by miteff.com, it must be downloaded

before it can be used. It is invoked using Java as follows:

Step Command Line

Extract the
private key

java -jar jksExportKey-1.0.jar <file.jks> <alias> <password> >

<file.key>

> keytool.exe -list -keystore my_keystore.jks

Enter keystore password: ******

Keystore type: JKS

Keystore provider: SUN

Your keystore contains 1 entry

my_alias, Nov 13, 2008, PrivateKeyEntry,

Certificate fingerprint (MD5):

B0:B6:00:D2:84:20:42:A1:C5:03:9A:F4:CA:F0:A5:24

http://miteff.com/jksexportkey

5

The relevant command line arguments are:

Argument Description
-jar jksExportKey-1.0.jar Tells Java to execute the code in the JAR file jksExportKey-

1.0.jar. The full path to jksExportKey (including quotes if the path
contains spaces) may be necessary if it isn’t placed it in a location
where it can be found implicitly.

<file.jks> Indicates the input file. Replace <file.jks> with the actual JKS file.
<alias> Tells jksExportKey the alias of private key entry to extract.
<password> Specifies the container file's password. Replace <password> with the

JKS file’s actual password. Unlike OpenSSL and keytool, the password
must be supplied as an argument.

<file.key> Specifies the output file in which to place the extracted key. Replace
<file.key> with the desired file name. This key file is ultimately
what will be used by the packet analyzer.

References
Besides the links embedded in the body, the following links were useful when putting together this

document:

 http://serverfault.com/questions/9708/what-is-a-pem-file-and-how-does-it-differ-from-other-

openssl-generated-key-file

 http://how2ssl.com/articles/working_with_pem_files/

 http://www.sslshopper.com/article-most-common-openssl-commands.html

 https://www.sslshopper.com/article-most-common-java-keytool-keystore-commands.html

 http://www.startux.de/index.php/java/44-dealing-with-java-keystoresyvComment44

 http://sharkfest.wireshark.org/sharkfest.09/AU2_Blok_SSL_Troubleshooting_with_Wireshark_a

nd_Tshark.pps

http://serverfault.com/questions/9708/what-is-a-pem-file-and-how-does-it-differ-from-other-openssl-generated-key-file
http://serverfault.com/questions/9708/what-is-a-pem-file-and-how-does-it-differ-from-other-openssl-generated-key-file
http://how2ssl.com/articles/working_with_pem_files/
http://www.sslshopper.com/article-most-common-openssl-commands.html
https://www.sslshopper.com/article-most-common-java-keytool-keystore-commands.html
http://www.startux.de/index.php/java/44-dealing-with-java-keystoresyvComment44
http://sharkfest.wireshark.org/sharkfest.09/AU2_Blok_SSL_Troubleshooting_with_Wireshark_and_Tshark.pps
http://sharkfest.wireshark.org/sharkfest.09/AU2_Blok_SSL_Troubleshooting_with_Wireshark_and_Tshark.pps

